FACILE SKELETAL REARRANGEMENT BY SOLVOLYSIS OF TRICYCLODECAENYL TOSYLATE $^{\mathrm{1}}$

Tadashi SASAKI, * Ken KANEMATSU, and Akihiro KONDO

Institute of Applied Organic Chemistry, Faculty of Engineering,

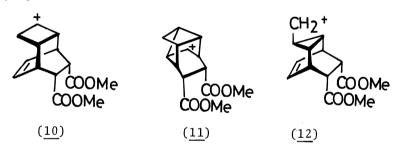
Nagoya University, Chikusa, Nagoya 464

Acetolysis of the tricyclic tosylate (exo-2) leads to a mixture of the transannular product (4) and the rearranged product (5), whereas the epimer (endo-2) undergoes only rearrangement to syn-8.

We have previously reported the transannular carbon-carbon bond formation between the two double bonds in the reaction of dimethyl tricyclo[$4.2.2.0^2$, 5]deca-3,7-diene-9,10-dicarboxylate with various electrophiles; 2 , 3 the transannular reaction of the molecule has provided a simple synthetic route to new highly strained polycyclic hydrocarbons.

In this communication, we report striking stereospecificity in acetolysis of the epimeric tricyclo[4.2.2.0^{2,5}]deca-7-ene-3-yl esters, exo- $\underline{2}$ and endo- $\underline{2}$ which may involve competition between alternative modes of π - and σ -participations at the developing cationic center. This work also provides an alternative synthetic route to the polycyclic hydrocarbons by a solvolytic rearrangement of alicyclic systems.

Oxidation of exo- $\underline{1}$ with chromic anhydride in acetic acid gave compound $\underline{3}$ in 40% yield, which, on sodium borohydride reduction at room temperature followed by tosylation using tosyl chloride in pyridine, gave endo- $\underline{2}^*$ (mp 120-121°C) in 59% yield. On the other hand, similar tosylation of exo-1 gave exo-2 (mp 143-144°C) in 96% yield.


Acetolysis of exo- $\underline{2}$ in refluxing acetic acid buffered by sodium acetate for 50 h gave compounds $\underline{4}$ (mp 87-88°C) and $\underline{5}$ (mp 89-90°C) in 48 and 20% yields, respectively. By contrast, similar acetolysis of endo- $\underline{2}$ under the same conditions for 9.5 h gave syn- $\underline{8}$ (mp 93-95°C) in 69% yield. Structures of $\underline{4}$, $\underline{5}$, and syn- $\underline{8}$ were established by independent synthesis: reduction of $\underline{6}^3$ with (n-Bu) $_3$ SnH in xylene gave $\underline{4}$ in 63% yield. Reduction of dimethyl tricyclo[4.2.2.0 3 , 5]deca-9-en-2-one-7,8-dicarboxylate (9) with sodium borohydride followed by acetylation (Ac $_2$ 0-pyridine) gave a 1:1 mixture of syn- $\underline{8}$ and anti- $\underline{8}$,

(exo-<u>1</u>) X= OH, Y= H (endo-<u>1</u>) X= H, Y= OH (exo-<u>2</u>) X= OTs, Y= H (endo-<u>2</u>) X= H, Y= OTs Configurational assignments of the epimers were based on the corresponding vicinal couplings to the C-2 proton by nmr; the signal at δ 4.95 in syn-8 shows a double doublet ($J_{1,2}$ = 4.25 Hz and $J_{2,3}$ = 8.25 Hz), whereas in anti-8 the signal must be doublet.

The result of these acetolyses clearly excludes any role by sp^2 -hybridized cation (10) and suggests π - and σ -participations prior to product formation. In exo- $\underline{2}$, participation of C_7 - C_8 π -bond or C_4 - C_5 σ -bond gave $\underline{4}$ and $\underline{5}$ via the intermediacy of $\underline{11}$ and $\underline{12}$, respectively.

On the other hand, the acetolysis of endo- $\frac{2}{2}$ involves stereospecific C_2 - C_5 σ -bond participation with concerted attack by acetoxy anion. The dramatic stereospecificity of σ -participation may be controlled by the initial alignment of relevant bonds, C_3 -O, C_2 - C_5 and C_4 - C_5 , in the tosylate.

REFERENCES AND NOTES

*All new compounds were characterized by ir and nmr, and gave satisfactory analyses.

- 1) Molecular Design by Cycloaddition Reactions. 31. Part 30 of this series,
 - T. Sasaki, K. Kanematsu, I. Ando, and O. Yamashita, in preparation.
- 2) T. Sasaki, K. Kanematsu, A. Kondo, and K. Okada, J. Org. Chem., in press.
- 3) T. Sasaki, K. Kanematsu, and A. Kondo, J. Org. Chem., 39, 2246 (1974).
- 4) A.C. Cope, S.F. Shaeren, and E.R. Trumbull, J. Am. Chem. Soc., 76, 1096 (1954).
- 5) A.S. Kende, J.K. Jenkins, and L.E. Fridrich, Chem. Commun., 1215 (1971).
- 6) An intermediacy of $\underline{11}$ could not be trapped by acetoxy anion because of facile lactonization.
- 7) A Nikon and R.C. Weglein, J. Am. Chem. Soc., 97, 1271 (1975).